If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+48x-1260=0
a = 1; b = 48; c = -1260;
Δ = b2-4ac
Δ = 482-4·1·(-1260)
Δ = 7344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7344}=\sqrt{144*51}=\sqrt{144}*\sqrt{51}=12\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12\sqrt{51}}{2*1}=\frac{-48-12\sqrt{51}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12\sqrt{51}}{2*1}=\frac{-48+12\sqrt{51}}{2} $
| -3x+4-22x=11-20x+18 | | 3x+4-22x=11-20x+18 | | x+2x+3x=-6-10-20 | | -25x+4=-15x-16 | | 1x+1,5*20+3*5=77 | | 3a2-21=0 | | 10x-10-5x=10 | | 9x+43=7x+57 | | 3x+20=x+14 | | 5/x=7/x+2 | | x+6x2+15=0 | | 2/x+2=6/2x+5 | | 5x2=16x-3 | | 3x-21÷2=5x | | 3x-21/2=5x | | x(x-4)=3(x-4)+x | | 9x2+16=24x | | 9*x*x=108 | | 2(2x+1)=5+4 | | -7x-7=-9-5x | | 25=11/12b=27 | | 36+47x=35-46x-71=-99 | | x/2-3/2-2x/3-4/3=5 | | 0.4x15=6 | | 2x+4x=-8+2x | | x-3/2-2x-4/3=5 | | 5/3+6X=4/3x-1 | | -7+v=2v-6-3 | | -1-5/3=x | | x+(5+x)+(2X-6)=47 | | (5/4x)-1/2=2/3(x+18) | | ((5/4x)-1/2)=(2/3(x+18)) |